Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications
نویسندگان
چکیده
منابع مشابه
Band gap engineering strategy via polarization rotation in perovskite ferroelectrics
Articles you may be interested in Piezoelectric anisotropy of orthorhombic ferroelectric single crystals Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400–700°C
متن کاملFerroelectrics for Biomedical Applications
Currently, researchers are mainly focusing the phase transitions, domain structures, domain wall functionalities, magneto electric coupling, and the potential applications in high-density ferroelectric non-volatile memories of ferroelectric materials [1-5]. However, there are relatively less research interests in the biomedical applications of ferroelectric materials which is very important to ...
متن کاملSynthesis and characterization of visible light active S-doped TiO2 nanophotocatalyst
S-doped and bare mesoporous TiO2 were prepared using titanium tetraisopropoxide and thiocarbamide as raw materials. Prepared materials were characterized by means of fourier transform infrared spectroscopy FT-IR, thermogravimetry-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), UV–Vis absorption spectroscopy, Brunauer–Emmett–Teller (BET) specific surface area and Barrett–Joy...
متن کاملFabrication and Characterization of Visible Light active Fe-TiO2 Nanocomposites as Nanophotocatalyst
In this research Fe-TiO2 nanocomposites with different molar ratios of Fe/Ti were prepared as nano-photocatalyst using a modified Sol-Gel process at ambient temperature. Crystallographic properties of nanocomposites were characterized by X-ray Diffraction (XRD). Surface morphology and mean particle size of nanocomposites were specified by Field Emission Scann...
متن کاملSynthesis and characterization of visible light active S-doped TiO2 nanophotocatalyst
S-doped and bare mesoporous TiO2 were prepared using titanium tetraisopropoxide and thiocarbamide as raw materials. Prepared materials were characterized by means of fourier transform infrared spectroscopy FT-IR, thermogravimetry-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), UV–Vis absorption spectroscopy, Brunauer–Emmett–Teller (BET) specific surface area and Barrett–Joy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2017
ISSN: 2041-1723
DOI: 10.1038/s41467-017-00245-9